04 CONHECER OS PROCESSADORES- B

Parte 3: Conhecendo os Processadores

Processadores, parte 2
Vamos à segunda parte do tópico de processadores, cobrindo os processadores mais atuais:


Pentium II

A Intel desenvolveu o Pentium II usando como base o projeto do Pentium Pro. Foram feitas algumas melhorias de um lado, e retirados alguns recursos (como o suporte a 4 processadores) de outro, deixando o processador mais adequado ao mercado doméstico.
Na verdade, o Pentium II, assim como o Pentium III também suportam multiprocessamento, mas são permitidos apenas dois processadores. Para habilitar este recurso é preciso apenas comprar uma placa mãe para dois processadores, estas são relativamente caras e difíceis de encontrar. É preciso usar dois processadores idênticos e usar um sistema operacional com suporte a multiprocessamento, como Windows NT, Windows 2000 ou Linux. O Windows 98 não serve neste caso pois ele reconhecerá apenas o primeiro processador, deixando o segundo desativado.
A mudança mais visível no Pentium II é o novo formato do processador. Ao invés de um pequeno encapsulamento de cerâmica, temos uma placa de circuito, que traz o processador e o cache L2 integrado. Protegendo esta placa, temos uma capa plástica, formando um cartucho muito parecido com um cartucho de video-game. O Pentium II utiliza também um novo encaixe, batizado pela Intel de Slot 1 e exige uma placa mãe específica.


Pentium II


Além do cache L1, de 32 KB, o Pentium II traz integrados ao processador, nada menos que 512 KB de cache L2, o dobro da quantidade encontrada na versão mais simples do Pentium Pro. No Pentium II porém, o cache L2 trabalha a apenas metade do clock do processador. Em um Pentium II de 266 MHz por exemplo, o cache L2 trabalha a 133 MHz.
Você nunca encontrará à venda uma placa mãe para Pentium II com cache, já que o cache L2 vem integrado ao próprio processador.

Uma última consideração a respeito dos processadores Pentium II é sobre a velocidade de barramento, ou seja, a velocidade da placa mãe utilizada pelo processador. As versões do Pentium II de até 333 MHz funcionam usando barramento de 66 MHz, enquanto que nas versões a partir de 350 MHz a placa mãe funciona a 100 MHz, o que acelera a troca de dados entre o processador e as memórias, tornando-o mais rápido. Vale lembrar são necessárias também memórias PC-100, as quais explicarei com mais detalhes no tópico sobre memórias.


Pentium II Xeon

O Xeon usa basicamente a mesma arquitetura do Pentium II, ficando a diferença por conta do cache L2, que no Xeon funciona na mesma velocidade do processador (como acontece no Celeron e no Pentium Pro). O Pentium II Xeon foi vendido em versões com 512, 1024 e 2048 KB de cache e em freqüências de 400, 450 e 500 MHz.
O Xeon foi especialmente concebido para equipar servidores, substituindo o Pentium Pro, pois como nestes ambientes o processamento é muito repetitivo, o cache mais rápido e em maior quantidade faz uma grande diferença, não fazendo porém muito sentido sua compra para uso doméstico devido ao seu alto preço. Outro recurso importante do Xeon é a possibilidade de se usar até 4 processadores na mesma placa mãe, sem necessidade de nenhum hardware adicional e até 8 caso a placa mãe possua um circuito especial chamado cluster. Naturalmente, é preciso uma placa mãe especial para usar mais de um processador.
Posteriormente foi lançado também o Pentium III Xeon, com as mesmas opções de cache, e em freqüências de até 550 MHz. Porém, a Intel teve dificuldades em lançar versões mais rápidas deste processador, que acabou saindo de linha, sendo substituído pelo Pentium III Xeon e mais recentemente pelo Xeon, baseado no Pentium 4.


Celeron

Depois que lançou o Pentium II, no início de 98, a Intel abandonou a fabricação do Pentium MMX, passando a vender apenas processadores Pentium II que eram muito mais caros. Como prova a história, a estratégia não deu muito certo, pois no por ser mais caro, o Pentium II perdeu boa parte do mercado de PCs de baixo custo para o K6-2 e o Cyrix 6x86, que apesar de terem um desempenho ligeiramente inferior, eram bem mais baratos.

Tentando consertar a besteira, a Intel resolveu lançar uma versão de baixo custo do Pentium II, batizada de Celeron, do Latin “Celerus” que significa velocidade. O Celeron original, nada mais era do que um Pentium II desprovido do Cache L2 integrado e do invólucro plástico, responsáveis por boa parte dos custos de produção do Pentium II, ou seja, vinha “pelado”.


Celeron de 300 MHz
As primeiras versões do Celeron, que incluem todos os de 266 MHz e alguns dos de 300 MHz, não traziam cache L2 algum e, por isso, apresentavam um desempenho muito fraco na maioria dos aplicativos, apesar de ainda conservarem um desempenho razoável em jogos e aplicativos que utilizam muito o coprocessador aritmético.
O cache L2 é um componente vital para os processadores atuais, pois apesar da potência dos processadores ter aumentado quase 10 mil vezes nas últimas duas décadas, a memória RAM pouco evoluiu em velocidade. Pouco adianta um processador veloz, se ao todo instante ele tem que parar o que está fazendo para esperar dados provenientes da memória RAM. É justamente aí que entra o cache secundário, reunindo os dados mais importantes da memória para que o processador não precise ficar esperando. Retirando o cache L2, a performance do equipamento cai em quase 40%, só não caindo mais por que ainda conservamos o cache L1. Justamente por isso, além de perder feio para o seu irmão mais velho, o Celeron sem cache perdia até mesmo para processadores menos avançados, como o MMX, o K6 e o 6x86MX. De fato, um Celeron sem cache de 266 MHz perde até mesmo para um 233 MMX em muitas aplicações.
Devido ao seu baixo desempenho, o Celeron sem cache não conseguiu uma boa aceitação no mercado, sendo inclusive muito criticado pela imprensa especializada. Numa nova tentativa de consertar a besteira cometida, a Intel resolveu equipar as novas versões do Celeron com 128 KB de cache L2, que ao contrário do cache encontrado no Pentium II, funciona na mesma frequência do processador. Todos os Celerons à venda atualmente possuem cache, isto inclui todas as versões apartir do Celeron de 333 MHz e a maioria dos de 300 MHz. Para não haver confusão, a versão de 300 MHz com cache é chamada de 300A.
Enquanto no Pentium II o cache é formado por chips separados, soldados na placa de circuito do processador, no Celeron o cache L2 faz parte do próprio núcleo do processador. Estes 128 KB de cache fazem uma diferença incrível na performance do processador. Enquanto um Celeron antigo é quase 40% mais lento que um Pentium II do mesmo clock, o Celeron com cache é menos de 6% mais lento, chegando a empatar em algumas aplicações. Isto acontece pois apesar Celeron possuir uma quantidade 4 vezes menor de cache, nele o cache L2 funciona duas vezes mais rápido, compensando em grande parte a diferença. Claro que isso também depende do aplicativo que estiver sendo executado.

Alguns programas, como o Word por exemplo, necessitam de uma grande quantidade de cache. Neste caso, mesmo sendo mais lento, o cache do Pentium II acaba sendo muito mais eficiente por ser maior. Em compensação, aplicativos que manipulam imagens em geral necessitam de um cache L2 mais rápido, pois os dados a serem

manipulados são menos repetitivos. Neste caso, o cache do Celeron acaba sendo tão ou até mesmo mais eficiente do que o cache encontrado no Pentium II.
Outro ponto a favor do Celeron é seu coprocessador aritmético, que, sendo idêntico ao do Pentium II, é muito mais rápido que o do MMX ou do K6, o que lhe garante um ótimo desempenho em aplicações gráficas.
Porém, comparado com o Pentium III, o Celeron já fica bem atrás, já que o Pentium III está disponível em versões com clock bem maior. Claro que em termos de processador de baixo custo o Celeron continua sendo uma ótimo opção. O Celeron com cache está existe em versões de 300 a 766 MHz.


Soquete 370 x Slot 1

Inicialmente, a Intel lançou o Celeron no mesmo formato do Pentium II, ou seja, na forma de uma placa de circuito que utiliza o Slot 1, a fim de manter a compatibilidade com todas as placas mãe já existentes e facilitar as vendas do novo processador.
Porém, logo depois foi lançado um novo formato de encapsulamento e um novo encaixe para o Celeron, chamado de Soquete 370. O formato é muito parecido com o de um Pentium MMX; a diferença é que o Celeron possui alguns pinos a mais. O Celeron para soquete 370 também é chamado de PPGA, abreviação de “Plastic Pin Grid Array”. Vale lembrar que, apesar dos encaixes serem parecidos, o Celeron PPGA não é compatível com as placas mãe soquete 7 utilizadas em conjunto como o MMX e o K6. Ao lado temos o Celeron PPGA ao lado de um Pentium MMX (à esquerda).


O Soquete 370 utiliza a mesma pinagem do Slot 1, e as placas utilizam os mesmos chipsets e demais componentes básicos. É possível inclusive encaixar um Celeron soquete 370 em uma placa mãe Slot 1 com a ajuda de um adaptador que custa cerca de 15 dólares, que pode ser visto na foto a seguir:

Celeron encaixado no adaptador

Durante muito tempo, a Intel continuou fabricando o Celeron nos dois formatos, mas a algum tempo atrás cancelou a produção das versões Slot 1, continuando a fabricar apenas as versões para soquete 370.
O Pentium III também seguiu o mesmo caminho, as primeiras versões usavam o mesmo formato slot 1 do Pentium II, houve uma transição e atualmente todos os processadores vem sendo fabricados no formato FC-PGA (para soquete 370). Para quem possui uma placa mãe slot 1, a mudança no formato não chega a ser um grande impecilho, pois basta usar um adaptador. Segundo a Intel, a mudança no formato teve como objetivo cortar custos.

Pentium III

Em toda a história da informática, o Pentium III é o processador com mais variações. Existem versões que utilizam barramento de 100 MHz, versões que utilizam barramento de 133 MHz, versões com 512 KB de cache half-speed (à metade da freqüência do processador, como no Pentium II), com 256 KB de cache full-speed (na mesma freqüência do processador, como no Pentium Pro), versões que utilizam o formato SEPP, versões que utilizam um novo formato, chamado de FC-PGA, versões que utilizam o core Katmai, versões que utilizam o core Coppermine (mais avançado), que operam a 2.0v, que operam a 1.65v, que operam a 1.6v, e por aí vai.
Dependendo da versão do processador, será preciso utilizar uma placa mãe diferente e em alguns casos módulos de memória RAM diferentes. Nunca a simples escolha de qual processador comprar foi tão confusa.
Para entender todas estas variações, vamos começar estudando cada um dos novos recursos introduzidos pelo Pentium III, além da própria evolução deste processador.


As novas instruções SSE

Basicamente, as instruções SSE diferem das instruções 3D-now! dos processadores AMD devido à forma como são executadas. A vantagem, é que o Pentium III é capaz de processar simultaneamente instruções normais e instruções SSE, o que resulta em um ganho ainda maior de performance.
Enquanto no 3D-Now! o programa tem a todo momento que escolher entre utilizar uma das instruções padrão, ou uma das instruções 3D-Now!, no Pentium III é possível usar os dois tipos de instruções simultaneamente, mantendo as três unidades de execução do coprocessador aritmético cheias durante mais tempo.


As versões: Katmai x Coppermine; 100 x 133 MHz

As primeiras versões do Pentium III, de 450, 500, 550 e 600 MHz, foram construídas usando a mesma técnica de fabricação do Pentium II, ou seja, utilizando o mesmo encaixe Slot 1, a mesma voltagem de 2.0v, os mesmos 512 KB de cache L2 à metade da freqüência do processador e o mesmo cache L1 de 32 KB e barramento de 100 MHz. Em essência, não temos nada mais do que um Pentium II com instruções SSE. Isto significa que, em aplicativos que não foram otimizados para as novas instruções, o desempenho apresentado por estas versões será rigorosamente o mesmo apresentado por um Pentium II do mesmo clock. A arquitetura (ou core) utilizada nestes processadores recebe o nome código de Katmai.
As próximas versões do Pentium III foram as 533B e 600B. Assim como as anteriores, estas versões continuam utilizando o core Katmai, a diferença é que enquanto as versões anteriores utilizavam placas mãe com barramento de 100 MHz, as novas versões utilizam placas mãe com barramento de 133 MHz. A versão 533A opera a 4x 133 MHz enquanto a 600A opera a 4,5x 133 MHz.
O barramento de 133 MHz vale apenas para a placa mãe e memória RAM; todos os demais componentes do micro, como placas de vídeo, HDs etc. continuam operando à mesma freqüência que a 66 ou 100 MHz. Por exemplo, o barramento PCI, que é utilizado pelos discos rígidos, placas SCSI e algumas placas de vídeo, som e modems, opera sempre a 33 MHz, independentemente da freqüência da placa mãe ser 66 MHz, 100 MHz ou 133 MHz. Na verdade, apenas temos a freqüência da placa mãe dividida por respectivamente 2, 3 e 4, resultando sempre nos 33 MHz padrão. O barramento AGP que é utilizado por placas de vídeo AGP opera sempre a 66 MHz, temos então a freqüência da placa mãe dividida por 1, 1.5 ou 2.
Como apenas a memória RAM trabalha mais rápido, o ganho de performance utilizando barramento de 133 MHz é bem pequeno, geralmente ficando abaixo de 3%. Em compensação, você precisará comprar uma placa mãe capaz de operar a 133 MHz e também módulos de memória PC-133, capazes de acompanhá-la.
Todas as versões seguintes do Pentium III, o que inclui as verões de 650, 667, 700, 733, 750, 800, 850 e 900 MHz; 500E, 550E, 600E, 533EB, 600EB, 800EB além, claro, da versão de 1 GHz, utilizam uma arquitetura mais avançada, chamada de Coppermine. Esta nova arquitetura traz vários avanços sobre a Katmai, utilizada nos processadores anteriores.
Para começar, temos transístores bem menores, medindo apenas 0.18 mícron (contra 0.25 do core Katmai).

Transístores menores geram menos calor, o que permite lançar processadores mais rápidos. Enquanto utilizando o core Katmai, o limite foi o Pentium III de 600 MHz, utilizando o core Coppermine já temos processadores de até 1 GHz.

Transístores menores também ocupam menos espaço, o que permite incluir mais componentes no núcleo do processador; chegamos então ao segundo avanço.

Enquanto no Pentium II e no Pentium III core Katmai o cache L2 é soldado na placa de circuito acoplada ao processador, sendo composto por dois chips separados, operando à metade da freqüência do processador, no core Coppermine ele foi movido para dentro do núcleo do processador, como no Celeron.
Isto permite que o cache L2 opere na mesma freqüência do processador, ao invés de apenas metade, melhorando bastante o desempenho. O único porém, é que, no core Coppermine, o cache L2 possui apenas 256 KB, metade do encontrado nas versões anteriores do Pentium III. Mas, lembre-se que com míseros 128 KB de cache L2 full-speed o Celeron consegue bater um Pentium II e muitas aplicações. Os processadores baseados no core Coppermine tem o dobro de cache L2 que o Celeron, fazendo com que seu desempenho literalmente pulverize as versões anteriores do Pentium III equipadas com cache mais lento.


FC-PGA?

Em seu curso de desenvolvimento, o Pentium III acabou seguindo o mesmo caminho do Celeron, tendo seu cache L2 incorporado ao núcleo do processador. A fim de cortar custos, a Intel resolveu lançar versões do Pentium III Coppermine no mesmo formato PPGA (que usa o soquete 370) do Celeron. Por um lado isto é bom, pois permite uma diminuição de até 15 dólares no custo final de cada processador, já que não é usada mais a placa de circuito, mas por outro é ruim, pois nos obriga a comprar um adaptador para poder encaixar um destes processadores em uma placa mãe Slot 1. No caso do Pentium III Coppermine, o novo encaixe é chamado de FC-PGA.
Existem algumas placas mãe, que possuem ambos os encaixes, permitindo encaixar qualquer um dos dois tipos de processador sem necessidade de adaptador. Naturalmente, apenas um dos encaixes poderá ser usado de cada vez.


Entendendo as variações do Pentium III

Como vimos até aqui, existem várias variações do Pentium III, quanto à voltagem, quanto à arquitetura, quanto à freqüência de barramento e quanto ao encaixe. À primeira vista, tudo parece muito confuso, mas depois de uma olhada mais demorada, você verá que é relativamente simples.
Na tabela a seguir estão marcados os recursos de cada versão do Pentium III. Logo a seguir virão mais algumas explicações.


Recursos

Versões de 450, 500, 550 e 600 MHz

Versões 533B e 600B

Versões 500E e 550E

Versões de 650, 700, 750 e 800 MHz e versão 600E

Versões de 667 e 733 MHz, versões 533EB, 600EB, 800EB e versão de 1 GHz

Arquitetura:

Katmai

Katmai

Coppermine

Coppermine

Coppermine

Versões

Apenas Slot 1

Apenas Slot 1

Apenas FC-PGA

Versões Slot 1 e FC-PGA

Versões Slot 1 e FC-PGA

Versões com barramento de 100 MHz

Sim

Não

Sim

Sim

Não

Versões com barramento de 133 MHz

Não, todas as versões usam bus de 100 MHz

Sim

Não, todas as versões usam bus de 100 MHz

Não, todas as versões usam bus de 100 MHz

Sim

Cache L2

512 KB
half-speed

512 KB
half-speed

256 KB
full-speed

256 KB
full-speed

256 KB
full-speed

Advanced System Buffering

Não

Não

Sim

Sim

Sim

A sigla “E” diferencia os processadores com core Coppermine dos com Core Katmai no caso de versões do mesmo clock, como no caso das versões de 500, 550 e 600 MHz. No caso, os processadores com o “E” são os com core Coppermine.
A sigla “B” (“B” de bus, ou barramento) indica processadores com bus de 133 MHz, enquanto a combinação “EB” indica processadores que ao mesmo tempo utilizam o core Coppermine e utilizam bus de 133 MHz, como no caso da versão EB de 800 MHz. Veja que em geral estas siglas são utilizadas para diferenciar processadores do mesmo clock, não sendo usadas no caso dos processadores de 667 e 733 MHz por exemplo, já que todos utilizam bus de 133 e core Coppermine.

AMD Athlon

Com o lançamento do Athlon, ou K7, como alguns preferem chamar, a AMD mostrou que tem força para competir não apenas no mercado de processadores de baixo custo, como na época do K6-2, mas disputar também no ramo de chips de auto desempenho.
O Athlon é um projeto completamente remodelo, está para o K6-2, seu antecessor, assim como os Pentiums II e III estão para o Pentium antigo. Do ponto de vista do desempenho, a principal vantagem do Athlon sobre seu antecessor é o coprocessador aritmético, que foi bastante aperfeiçoado. Para se ter uma idéia, enquanto o coprocessador aritmético do K6-2 é capaz de processar apenas uma instrução por ciclo, o coprocessador do Athlon processa até 3 instruções. Claro que na prática o desempenho não chega a triplicar, pois existem vários outros fatores, como a latência, número de estágios de pipeline, etc., mas serve para ilustrar o avanço.
Mesmo comparado com o Pentium III, o Athlon leva vantagem neste quesito, pois o Pentium III é capaz de processar apenas 2 instruções por ciclo. Isso explica o bom desempenho do Athlon em alguns aplicativos, como por exemplo o 3D Studio. Porém, como compensação, o Pentium III tem as instruções SSE, que são bem mais poderosas que as instruções 3D-Now! do Athlon. Isto assegura que nos aplicativos otimizados o Pentium III possa superar o Athlon em desempenho, como acontece por exemplo no jogo Quake 3.
Na média os dois processadores ficam mais ou menos no mesmo nível, cada um levando vantagem em algumas áreas. A vantagem do Athlon é o fato de ser mais barato que um Pentium III da mesma frequência e estar disponível em clocks maiores

Versões

Assim como o Pentium III existe em duas arquiteturas diferentes, Katmai e Coppermine como vimos anteriormente, o Athlon também pode ser encontrado em duas versões.
A primeiras versões do Athlon vinham com 512 KB de cache externo, operando à 1/2, 2/5 ou 1/3 da frequência do processador, dependendo da versão. Estes processadores foram produzidos apenas no formato slot A (em forma de cartucho), que apesar de incompatível, é bem parecido com o Slot 1 usado pelos processadores Intel, como pode ser visto na foto abaixo:

Athlon Slot A

Depois de algum tempo, a AMD acabou seguindo os mesmos passos que a Intel, e incorporando o cache L2 ao próprio núcleo do processador. Nasceu então o Athlon Thunderbird que é a versão atual.
O novo Athlon traz 256 KB de cache L2 integrados ao núcleo do processador, operando à mesma frequência deste, contra os 512 KB operando à 1/2, 2/5 ou 1/3 da frequência encontrados nos modelos antigos. Apesar de vir em menor quantidade, o cache do Athlon Thunderbird oferece um grande ganho de performance, pois opera à mesma frequência do processador. Num Athlon Thunderbird de 900 MHz, o cache L2 também opera a 900 MHz.
Mas existe um pequeno problema, o novo Athlon utiliza um novo encaixe, chamado de “Soquete A”, um formato parecido com o soquete 370 usado pelos processadores Intel. Infelizmente, ao contrário do que temos nos processadores Intel, não existe nenhum adaptador que permita encaixar os novos Athlons, em formato soquete nas placas mãe Slot A antigas.
Fica então a recomendação de ao comprar um placa mãe para o Athlon comprar um modelo soquete A, que oferecerá a possibilidade de atualizar o processador posteriormente, o que não seria possível numa placa slot A, que já estão obsoletas.
Para diferenciar o Athlon Thunderbird dos modelos antigos, basta checar seu formato. O novo Athlon usa o formato soquete A, enquanto os modelos antigos utilizam o formato Slot A. A AMD chegou a produzir algumas séries do Thunderbird no formato Slot A, mas foram poucos, destinados principalmente à micros de grife, por isso, não espere encontrá-los à venda facilmente.


Athlon Thunderbird (Soquete A)


AMD Duron

O Duron é o novo processador da AMD, que vem como substituto dos cansados K6-2, para ser o concorrente direto do Celeron no mercado de baixo custo. O novo processador está disponível em versões apartir de 600 MHz.
Apesar do lançamento do Duron, a AMD ainda continua produzindo os processadores K6-2, pois estes são muito baratos. Entretanto, o K6-2 já está com sua morte decretada, pois não devem ser lançadas novas versões deste processador, e a séria deve ser descontinuada em breve.
O Duron utiliza a mesma arquitetura do Athlon Thunderbird, a nova versão do Athlon, que comentei anteriormente. Porém, vem com muito menos cache. Enquanto o Athlon Thunderbird vem com 256 KB de cache L2 full speed, o Duron vem com apenas 64 KB de cache L2, também full speed.
Entretanto, apesar da pouca quantidade de cache L2, o Duron traz um enorme cache L1 de 128 KB, totalizando 192 KB de cache, mais cache que o Celeron, que tem 32 KB de cache L1 e 128 KB de cache L2, totalizando 160 KB de cache.
Em se tratando de cache, o Duron traz mais uma vantagem em relação ao Celeron. No Duron, o cache L2 é exclusivo, isto significa que os dados depositados no cache L1 e no cache L2 serão diferentes. Temos então realmente 192 KB de dados depositados em ambos os caches. No Celeron, o cache é inclusivo, isto significa que os 32 KB do cache L1 serão sempre cópias de dados já armazenados no cache L2. Isto significa que na prática, temos apenas 128 KB de dados armazenados em ambos os caches.
O Duron utiliza o novo encaixe soquete A, o mesmo utilizado pelo Athlon Thunderbird. Apesar dos encaixes serem parecidos, o Duron não é compatível com placas FC-PGA para processadores Intel, nem existe nenhum tipo de adaptador.
O Duron vem surpreendendo em termos de desempenho, ganhando por uma grande margem de um Celeron da mesma frequência, apresentando um desempenho muito semelhando ao de um Athlon de arquitetura antiga (com cache L2 à metade ou 2/5 da frequência do processador). O melhor de tudo é que apesar do desempenho mais do que convincente, o Duron custa menos do que o Celeron da mesma frequência, e naturalmente, muito menos do que Pentium III ou Athlon. Para quem está procurando um micro de alto desempenho, mas quer gastar pouco está próximo do ideal.

O Duron de 750 MHz supera em desempenho um Athlon de 700 MHz, ficando muito próximo de um Pentium III também de 700 MHz, ambos processadores bem mais caros. Numa comparação direta com o Celeron que seria seu concorrente direto, novamente o Duron leva vantagem, o Duron de 700 MHz supera facilmente o Celeron de 766 MHz, a versão mais rápida atualmente.
O grande problema do Duron, principalmente aqui no Brasil continua sendo o preço das placas mãe para ele, consideravelmente mais caras que placas equivalentes para processadores Intel. Entretanto já estão começando a aparecer placas mais baratas, como a Gigabyte GA-7ZM e a FIC AZ, ambas já vem com som onboard (que pode ser desabilitado), e custam, aqui no Brasil, entre 160 e 190 dólares, dependendo do vendedor. A tendência é que comecem a aparecer placas cada vez mais baratas.
Lembre-se que para usar o Duron, assim como os Athlons mais novos, você precisará de uma placa Soquete A, as placas Slot A usadas pelos Athlons antigos não servem.


Pentium 4

Depois de vários atrasos, finalmente o Pentium 4, conhecido anteriormente como Willamette chega ao mercado. As duas versões iniciais operam a respectivamente 1.4 e 1.5 GHz, estando anunciadas versões de até 2 GHz até o final de 2001. O preço também não fica muito atrás.
Outro ponto interessante sobre o Pentium 4 é que inicialmente, o único chipset disponível, o i850 da própria Intel suporta apenas memórias Rambus, o que obriga qualquer um interessado em adquirir um Pentium 4 a adquirir também módulos de memória Rambus (veja mais detalhes no tópico sobre memória RAM). A boa notícia é que finalmente as memórias Rambus estão começando a chegar ao mercado com preços digamos aceitáveis. Nos EUA um módulo RIMM de 64 MB custa em média 99 dólares, contra 45 dólares em média por um módulo de 64 MB de memória PC-133. Ainda custa pelo menos o dobro, mas já é bem menos do que custava a alguns meses atrás. Lembrando que como veremos adiante, os módulos RIMM devem ser usados em pares no Pentium 4.
A Via já divulgou planos de produzir um chipset que permita utilizar memórias DDR SDRAM em conjunto com o Pentium 4. Como as memórias DDR são mais baratas que as memórias Rambus, as novas placas mãe permitiriam baratear os micros equipados com o Pentium 4.

A Arquitetura

O primeiro alerta a se fazer sobre o Pentium 4 é que o aumento da freqüência de operação não significa um ganho automático de potência. Um Pentium 4 de 1.5 GHz não é 50% mais rápido que um Pentium 3 de 1 GHz. Um dado é o número de ciclos por segundo que o processador pode executar, outro é o que ele consegue processar em cada ciclo. Um 486 de 100 MHz por exemplo é muito mais lento que um Pentium de 75 MHz, apesar de operar a uma freqüência mais alta.
Para entender os pontos fortes e fracos do Pentium 4, onde ele é mais rápido e onde ele é mais lento, por que não começar analisando a arquitetura interna do processador?
A Intel batizou a nova arquitetura do Pentium 4 de “NetBurst”. O Nome não tem nada a ver com o desempenho em redes ou na Internet, mas tenta ilustrar os novos recursos do processador, assim como dar um ar de superioridade. A arquitetura NetBurst é composta por 4 componentes: Hyper Pipelined Technology, Rapid Execution Engine, Execution Trace Cache e Bus de 400MHz. Vamos aos detalhes de cada uma das 4 tecnologias:


Hyper Pipelined Technology

Esta é a característica mais marcante do Pentium 4. O Pipeline é um recurso que divide o processador em vários estágios, que trabalham simultaneamente, dividido o trabalho de processar as instruções. É como uma linha de produção com vários operários, onde cada um monta uma peça, até termos no final o produto completo. Apartir do 486, todos os processadores utilizam este recurso.
O Pentium III possui 10 estágios, o Athlon possui 11 estágios, enquanto o Pentium 4 possui nada menos que 20 estágios, daí o nome “Hyper Pipelined”.
O uso de Pipeline permite que o processador possa processar várias instruções ao mesmo tempo, sendo que cada estágio cuida de uma fração do processamento. Quanto mais estágios, menor será o processamento executado em cada um. No caso do Pentium 4 cada estágio do Pipeline processa apenas metade do processado por um estágio do Pentium III, fazendo com que teoricamente o resultado final seja o mesmo, já que em compensação existem o dobro de estágios.
O uso de mais estágios permite que o processador opere a freqüências bem mais altas, já que cada estágio executa menos processamento. O grade problema neste caso é que os processadores atuais executam várias instruções simultaneamente, enquanto os programas são uma seqüência de instruções. O Pentium 4 processa três instruções por ciclo, o Pentium antigo (Pentium 1) processa duas, e assim por diante.
Caso as instruções seguintes não dependam do resultado da primeira, como uma seqüência de somas de vários números, por exemplo, então o processador não terá nenhum problema para resolvê-las rapidamente. Caso porém tenhamos uma tomada de decisão, onde o processador precisa primeiro resolver uma instrução para saber qual caminho deve tomar, como por exemplo “Se A > 3 então B = C+5 senão B = C-5”, entra em cena o recurso de execução especulativa,
onde enquanto é resolvida a primeira instrução, o processador escolhe um dos caminhos possíveis para ir “adiantando o serviço” enquanto não sabe qual deverá seguir. Se ao saber o resultado da primeira instrução ver que tomou o caminho certo, simplesmente continuará apartir dali. Caso por outro lado o processador tenha adivinhado errado, então terá que jogar fora todo o trabalho já feito e tomar o outro caminho, perdendo muito tempo.

O Pentium 4 perde nesse quesito, pois ele demora o dobro do tempo para processar a primeira instrução, já que ela é processada em 20 estágios, contra 10 do Pentium III. Isto significa que a cada tomada de decisão errada, serão perdidos pelo menos 20 ciclos de processamento, um eternidade, considerando que em média, 14% das instruções processadas são de tomada de decisão. Se por acaso o processador errasse 50% das previsões, então os 7% de erros de previsão resultariam numa diminuição de 30% do desempenho do processador em comparação com o antigo Pentium III.
Isto significa que a princípio o Pentium 4 é mais lento que um Pentium III do mesmo clock, podendo em compensação operar a freqüências mais altas. Todas as demais alterações feitas pela Intel, explicadas a seguir servem como paliativos para tentar diminuir a perda de desempenho trazida pelo maior número de estágios de Pipeline. Foi justamente devido a isto que a Intel optou por lançar diretamente os modelos de 1.4 e 1.5 GHz, pulando as versões de 1.1 e 1.2 GHz, que seriam o caminho mais óbvio já que o Pentium III ficou estacionado na versão de 1 GHz. Caso fosse lançado, um Pentium 4 de 1.1 GHz perderia para um Pentium III de 1 GHz em praticamente todas as aplicações.
Além da perda de desempenho, outro efeito colateral de se usar mais estágios de Pipeline é o fato de tornar o processador maior e mais complexo, fatalmente bem mais caro de se produzir. O Pentium 4 mede 217 milímetros quadrados, quase o dobro do Athlon, que mede 120 mm². Isto significa que o Pentium 4 é proporcionalmente mais caro de se produzir, o que se reflete nos preços ao consumidor.


Execution trace Cache

O uso do cache L1 no Pentium 4 é no mínimo inovador. O Pentium 3 por exemplo tem 32 KB de cache L1, dividido em 2 blocos de 16 KB cada, para instruções e dados. O Athlon tem 128 KB de cache L1, também dividido em dois blocos. O Pentium 4 por sua vez tem apenas 8 KB de cache para dados e só. Só? Sim, só isso. Porém, ele traz duas inovações que compensam esta aparente deficiência. A primeira é que graças ao tamanho reduzido, o pequeno cache de dados tem um tempo de latência menor, ou seja é mais rápido que o cache L1 encontrado no Pentium III e no Athlon. Do ponto de vista dos projetistas da Intel, esta foi a melhor relação em termos de desempenho.
O cache de instruções por sua vez foi substituído pelo Execution trace Cache, que ao invés de armazenar instruções, armazena diretamente uOPs, que são as instruções já decodificadas, prontas para serem processadas. Isto garante que o cache tenha apenas um ciclo de latência, ou seja o processador não perde tempo algum ao utilizar um dados armazenado no trace cache, ao contrário do que acontecia no Pentium III, onde perdia-se pelo menos dois ciclos em cada leitura.
Se você está em dúvida sobre o que é um “uOP”, e como eles são produzidos e processados, aqui vai uma explicação resumida: Apesar dos processadores para micros PC continuarem usando o conjunto x86 de instruções, que é composto por 184 instruções, internamente eles são capazes de processar apenas instruções simples de soma e atribuição. Existe então um circuito decodificador, que converte as instruções complexas usadas pelos programas nas instruções simples entendidas pelo processador. Uma instrução complexa pode ser quebrada em várias instruções simples. No Pentium 4, cada instrução simples é chamada de “uOP”. No Athlon cada conjunto de duas instruções ganha o nome de “macro-ops”.

Bus de 400 MHz

Visando concorrer com o bus EV6 do Athlon, que opera de 100 a 133 MHz, com duas transferências por ciclo, o que resulta na prática em freqüências de respectivamente 200 e 266 MHz, o Pentium 4 conta com um bus operando a 100 MHz, mas com 4 transferências por ciclo, o que equivale a um barramento de 400 MHz.
O barramento controla a velocidade de comunicação entre o processador e o chipset. Um barramento mais rápido, não significa um ganho automático de performance, porém, um barramento insuficiente, causará perda de desempenho, fazendo com que o processador não consiga comunicar-se com os demais componentes à velocidade máxima.


Rapid Execution Engine

Todo processador atual é dividido em dois componentes básicos, as unidades de execução de inteiros e as unidades de ponto flutuante. A parte que processa as instruções envolvendo números inteiros é responsável pela maior parte das instruções, e pelo desempenho do processador nos aplicativos do dia a dia enquanto as unidades de ponto flutuante, que compõe o que chamamos de coprocessador aritmético é responsável pelo processamento das instruções envolvendo valores complexos, usadas por jogos e aplicativos gráficos.
A “Rapid Execution Engine” do Pentium 4 consiste num reforço nas unidades de inteiros do processador. O Pentium 4 possui um total de 5 unidades de processamento de inteiros, duas ALUs, que processam as instruções mais simples, duas GLUs, encarregadas de ler e gravar dados e uma terceira ALU, encarregada de decodificar e processar as instruções complexas, que embora em menor quantidade, são as que tomam mais tempo do processador.
Este conjunto de 5 unidades de execução de inteiros é semelhando ao do Pentium III, porém, como diferencial, no Pentium 4 tanto as duas ALUs encarregadas das instruções simples, quanto as duas GLUs encarregadas das leituras e gravações são duas vezes mais potentes.
Na teoria parece maravilhoso, mas existe um pequeno detalhe que elimina boa parte do ganho que seria de se esperar deste esquema. Apesar das duas ALUs de instruções simples terem ficado mais rápidas, visando justamente compensar a perda de desempenho trazida pelos 20 estágios de Pipeline do Pentium 4, a ALU de instruções complexas não teve a mesma evolução. Isto significa que ao passar a usar 20 estágios de Pipeline, esta terceira ALU tornou-se mais lenta que a mesma no Pentium III.
Temos então um cenário onde as instruções simples são rapidamente processadas, mas as instruções complexas ficam entaladas na vala comum da terceira ALU, causando uma grande perda de desempenho.

No coprocessador aritmético o cenário é ainda mais complicado, pois apesar das unidades de execução terem perdido desempenho devido ao Pipeline de 20 estágios, não houve nenhum avanço para equilibrar a balança, como tivemos nas unidades de inteiros. Pelo contrário, o coprocessador aritmético encolheu, tendo sido podadas duas

das unidades de execução, uma das que processava instruções MMX e uma das que processava instruções SSE.
Ao invés de evoluir, como seria de se esperar, o coprocessador aritmético do Pentium 4 tornou-se ainda mais frágil do que o do Pentium 3, trazendo um cenário no mínimo curioso. Enquanto na época do Pentium II e do K6, a AMD competia com um processador que apesar de possuir um bom desempenho em aplicativos de escritório era literalmente massacrado nos jogos e aplicativos gráficos, temos agora com o Pentium 4 x Athlon um cenário semelhante, porém com os lados invertidos: A Intel ataca com um processador que é potente em inteiros, mas fraco em ponto flutuante.
Ironicamente, a solução da Intel para tentar diminuir a deficiência do processador em ponto flutuante é a mesma que a AMD usou na época do K6-2. Lembra-se do 3D-Now, as instruções incorporadas ao K6-2, que melhoravam seu desempenho nos jogos otimizados, fazendo com que em alguns títulos seu desempenho ficasse muito próximo ao de um Pentium II? A Intel optou por segui exatamente o mesmo caminho, incorporando 144 novas instruções ao Pentium 4, chamadas de SSE2, que visam melhorar seu desempenho os jogos e aplicativos gráficos.

SSE2

As “Double Precision Streaming SIMD Extensions” do Pentium 4 são 144 novas instruções de ponto flutuante de dupla precisão. Elas tem basicamente a mesma função das instruções SSE do Pentium III e do 3D-Now! Do Athlon: melhorar o desempenho do processador em aplicativos de ponto flutuante. A diferença é que as instruções do Pentium 4 são muito mais poderosas que os conjuntos anteriores, o que garante que o Pentium 4 apresente um desempenho realmente muito bom nos aplicativos otimizados para as novas instruções. A grande dúvida é que assim como nos conjuntos anteriores, é necessário que os aplicativos sejam reescritos a fim de utilizar as novas instruções. E isso, claro, pode demorar um bom tempo, dependendo de como for a vendagem do processador.
A AMD anunciou que sua próxima geração de processadores, o ClawHammer e Sledgehammer também suportarão o SSE2, mas eles devem estar no mercado apenas no final de 2001. Por enquanto o Pentium 4 ainda tem exclusividade. Vale lembrar que o Pentium 4 mantém compatibilidade com as instruções SSE do Pentium III, aproveitando a base de aplicativos otimizados que já existe.

Acesso à Memória

Apesar de trazer como desvantagem o fato de usar as caras memórias Rambus, o Pentium 4 está indiscutivelmente bem posicionado do ponto de vista do desempenho de acesso à memória. Acessando simultaneamente dois módulos RIMM temos um barramento de dados de 3.2 GB/s usado módulos PC-800, o que corresponde a três vezes o acesso permitido por módulos de memórias PC-133 comuns. Mesmo o Athlon usando memórias DDR fica para trás neste quesito
Por um lado isto ajuda bastante o processador em aplicativos dependentes da velocidade de acesso à memória, como programas de edição e compressão de vídeo e alguns jogos. Por outro causa no mínimo um certo desconforto no bolso, já que além de usar memória Rambus é preciso usar os módulos em pares. Se quiser 128 MB de memória, terá que usar obrigatoriamente dois módulos de 64 MB da mesma marca e velocidade. Não existe a possibilidade de usar módulos RIMM de velocidades diferentes ou números ímpares.


Instalação do Processador

O Pentium 4 utiliza como encaixe o soquete 423, semelhante ao soquete 370 utilizado pelo Pentium III e Celeron, mas naturalmente com mais contatos. A novidade fica por conta da instalação do Cooler.
No Pentium 4, além de ser preso ao soquete através de presilhas, o cooler utiliza dois encaixes parafusados diretamente à chapa do gabinete, através de 4 orifícios na placa mãe. Estes suportes tornam-se necessários devido à monstruosidade que são os coolers para Pentium 4, o cooler original da Intel, que acompanha os processadores Boxed por exemplo pesa quase meio quilo!. Definitivamente vai ser o fim dos coolers de 10 reais made in Paraguai.
Uma novidade bem vinda é que o Pentium 4 trás de volta a chapinha metálica sobre o processador, o que acaba com os problemas de rachaduras no processador ao ser instalado o cooler, como vem acontecendo com alguns processadores Pentium III, Celeron, Duron e Athlon, soquetados, onde temos a parte traseira do processador (que é bem frágil) diretamente exposta.

Pentium 4: a chapa metálica protege o chip

Duron: O chip está exposto


Juntamente com o Pentium 4, A Intel lançou também um novo padrão de fontes de alimentação, o ATX 2.03. O problema neste caso é que o Pentium 4 consome uma quantidade muito grande de eletricidade. O padrão consiste em fontes que comprovadamente podem suportar esta demanda, e como garantia futura, as novas fontes trazem um novo conector de 12 volts. Este conector é ligado diretamente a placa mãe visando aumentar o fornecimento elétrico para o processador.


Novo conector da fonte


Nenhum comentário: